25 February 2022

UArctic - Graduate Seminar on Climate Change and Resilience in the North

Drivers for green infrastructure mainstreaming in northern land development: An evolutionary governance perspective

Nicklas Baran MSc Student Supervisor: Dr. S. Jeff Birchall School of Urban and Regional Planning Department of Earth and Atmospheric Sciences University of Alberta, Edmonton, Canada

CLIMATE ADAPTATION + RESILIENCE LAB

- I Background
- II Research objective
- III Methodology
- IV Findings
- V Discussion

Climate Change

- Exacerbates vulnerability in northern communities (1, 2).
- Resilience through adaptation is a necessity!
- Ecosystems enhance system redundancy, provide greater flexibility, and can act alongside grey infrastructure (3, 4)

Image courtesy: TomTookIt

Building Resilience: Green Infrastructure

- Natural, semi-natural, or constructed living system that contributes ecosystem services to humans (5).
- Examples: naturalization, conservation areas, low-impact design.
- Provides ecosystem services help enhance resilience and reduce vulnerability (6).

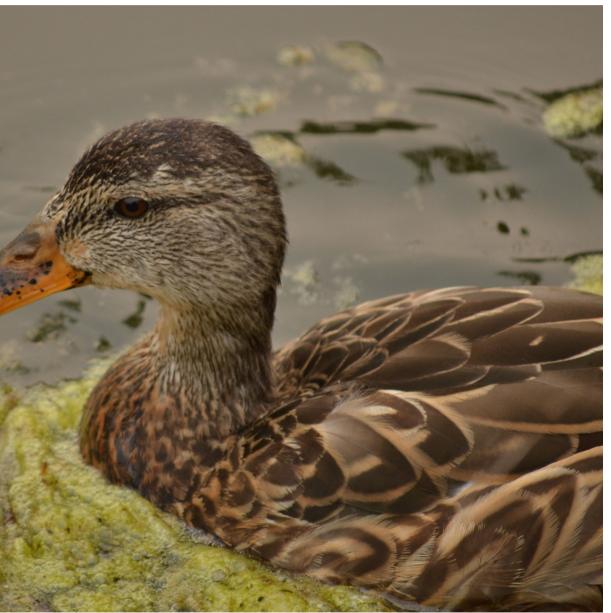


Image courtesy: TomTookIt

Relationship to Resilience? Ecosystem Services

- Flood mitigation
- Water purification
- Erosion control
- Stormwater management
- Heat reduction
- Air pollution interception
- Habitat and biodiversity
- Recreation
- Passive enjoyment
- Aesthetic

Image courtesy: Nicklas Baran

Research Gaps

- We know that different green infrastructure solutions provide different ecosystem services (7).
- Gaps in understanding:
 - How stakeholder ecosystem service values shape green infrastructure implementation.
 - Enabling and constraining factors to implementation in northern communities.

Image courtesy: Nicklas Baran

Research Objectives

 To elucidate the underlying factors influencing green infrastructure uptake in urban planning and development of northern communities.

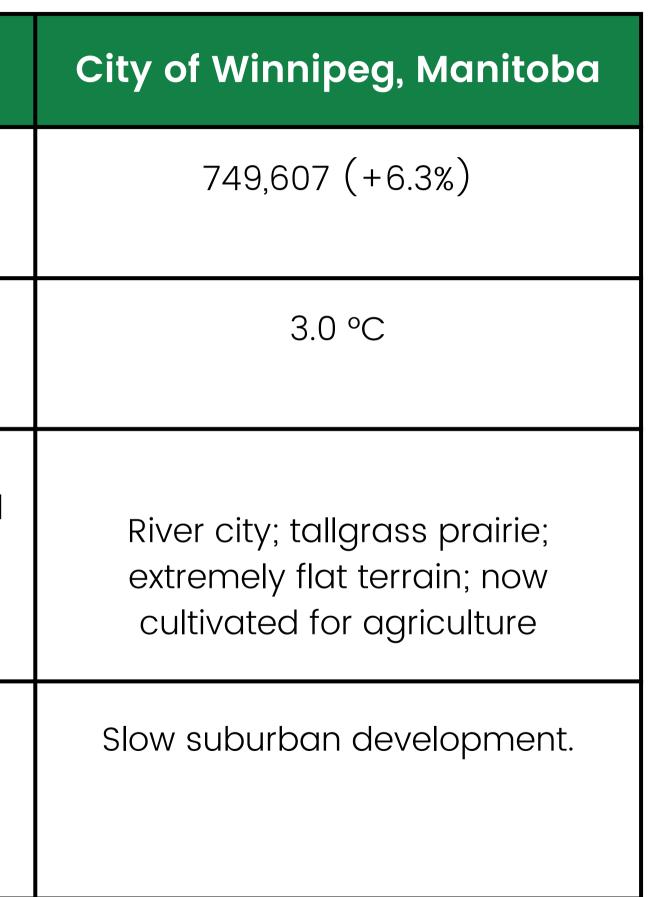


Image courtesy: Nicklas Baran

Case Studies

Case Study/Factor	City of Edmonton, Alberta
2021 population (change since 2016; 8)	1,010,899 (+8.3%)
Average annual temperature (1981-2010; 9)	4.2 °C
Biogeography	River city; aspen parkland; flat and gently rolling/flat terrain; now cultivated for agriculture
Land Development Context	Rapid suburban development 2008-2015 catalyzed by oil boom.

Methods

- 16 key informant interviews
 - Nine from Edmonton; seven from Winnipeg.
 - Six municipal officials; six land developers; four consultants
- Document review of relevant policy.
- Document analysis of municipal plan.

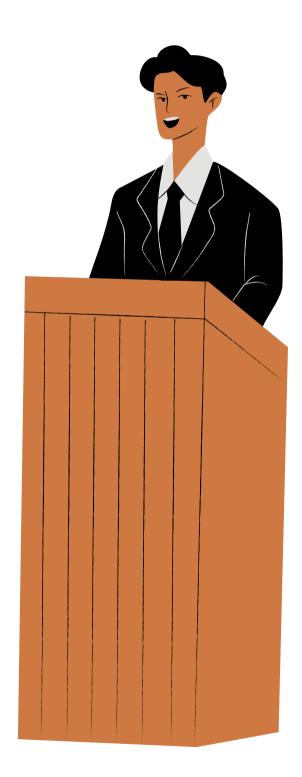
Extent of Green Infrastructure Implementation

- Both cities have made naturalized stormwater ponds standard practice, upland naturalization also occurring.
- Edmonton has explored nonconventional approaches like bioswales and rain gardens with limited success.
- Focus is largely on greenfield development instead of infill.

Image courtesy: Nicklas Baran

Combined Sewer Overflows in Winnipeg

Naturalized stormwater ponds where sanitary and storm sewers are separate



No green infrastructure at the source of combined sewer overflows

12

Drivers for Implementation

- Political ideology.
 - Climate adaptation is a priority in Edmonton, not Winnipeg.
- Location-specific events.
 - Eutrophication of Lake Winnipeg.
- Stakeholder motivations.

Constraining & Enabling Factors - Institutional

- Reluctance to accept new, untested, and non-engineering approaches.
- In Winnipeg, municipal administration and rigid regulations are the primary barrier.
- Policy-induced ecosystem service tradeoffs.

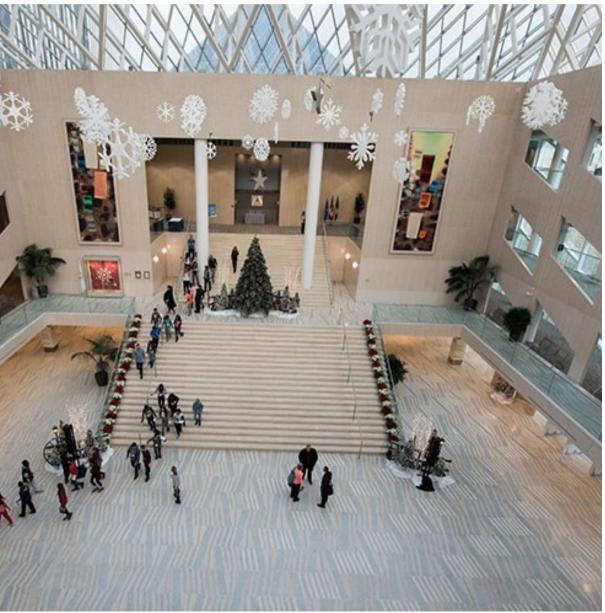


Image courtesy: City of Edmonton

Constraining & Enabling Factors - Financial

- Additional cost for developers.
- Incentives for developers: amenity bonus.
- Certain approaches require less maintenance.
- Still, the municipality struggles with maintenance in cost and capacity.

Constraining & Enabling Factors - Physical

- Climate a major barrier to rain gardens, bioswales, and green roofs.
- Soil clay is impermeable, can do more harm than good.
- Ecological invasive species, ecosystem disservices.
- Built area inadequate space for implementation in mature areas.

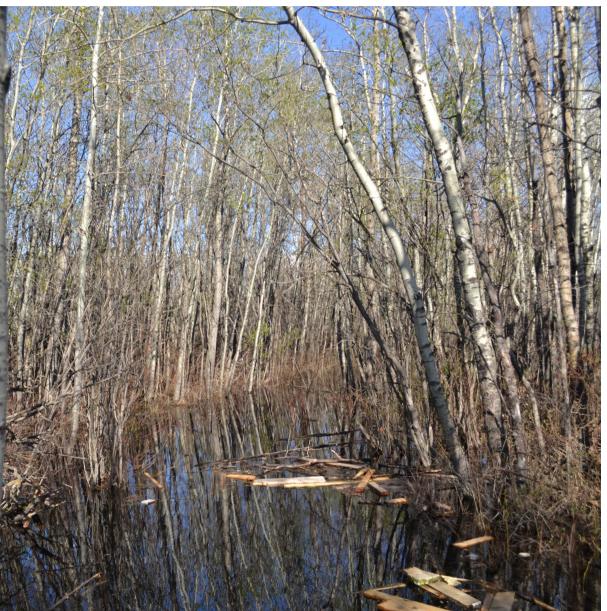


Image courtesy: Nicklas Baran

Evolutionary Governance Theory (10)

• Explores the evolution of governance.

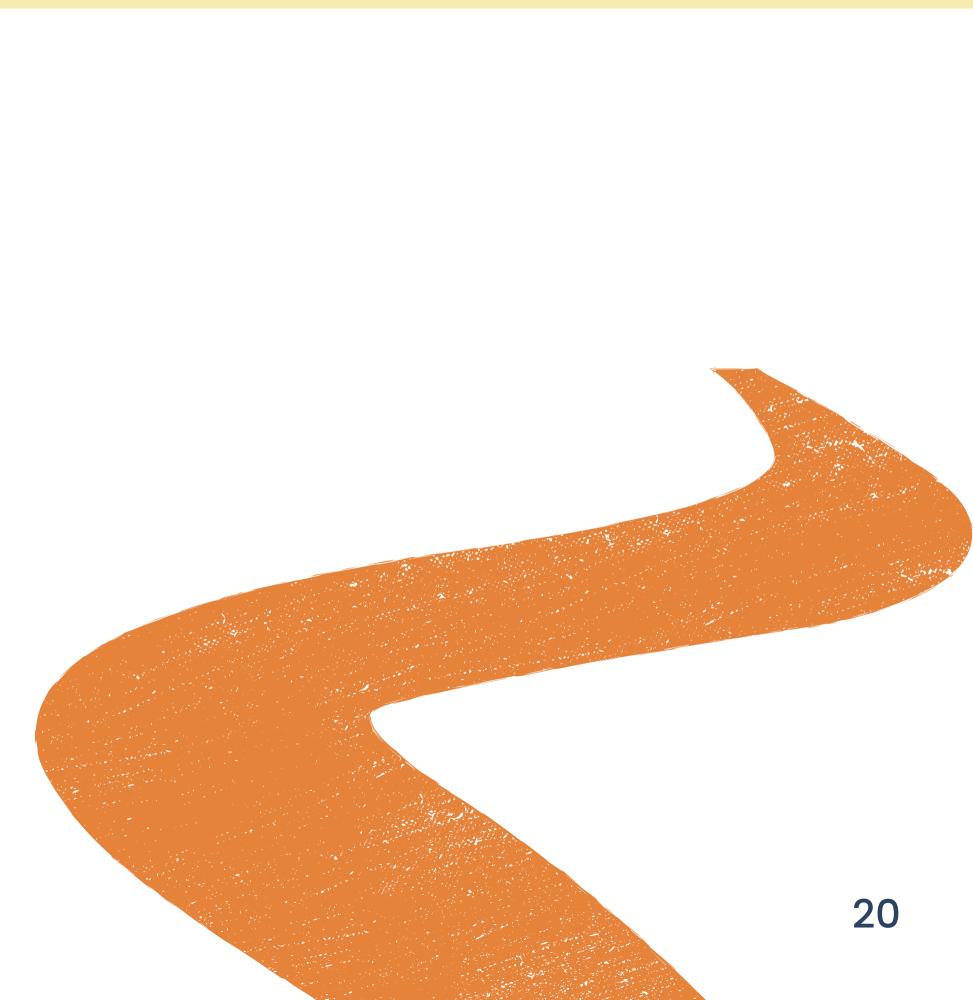
Elements

- Agents
- Institutions
- Power
- Knowledge

Agents & Institutions

- Agents: municipal administration & council, land development industry, consultants.
- Institutions: plans, policies, regulations, informal convention.
- Green infrastructure implementation requires flexible institutions for contextspecificity (11)

Power/Knowledge


Discussion

- Power and knowledge are inseparable.
- Municipal power can dictate development through institutions.
- Yet developers have power to influence institutions.
- This is informed by knowledge.

Path Dependencies

- Historical legacies of suburban sprawl.
- Engineering-oriented policies.
- Takes political will from multiple avenues to shift governance paths.

Evolving Governance: Champions

- In Winnipeg, developers championed green infrastructure while municipal officials were hesitant.
- In Edmonton, City Administration is championing green infrastructure while developers are hesitant.

Image courtesy: Nicklas Baran

Key Implications

- Municipalities have power to lead or prevent green infrastructure mainstreaming.
- Developer insight is important.
- Future improvements are required.

Image courtesy: Nicklas Baran

Literature Cited

- 1. Folke, C., Hahn, T., Olsson, P., and J. Norberg. (2005). Adaptive governance of social-ecological systems. Annual Review of Environment Resources, 30, 441-473.
- 2. Tyler, S. and Moench, M. 2012. A framework for urban climate resilience. Climate and Development 4(4): 311–326.
- 3.Berke, P., and Ward, L. 2013. Public Risks and the Challenges to Climate-Change Adaptation: A Proposed Framework for Planning in the Age of Uncertainty. Cityscape: A Journal of Policy Development and Research, 15(1): 181-208.
- 4. Wamsler, C., L. Niven, T. H. Beery, T. Bramryd, N. Ekelund, K. I. Jönsson, A. Osmani, T. Palo, and S. Stålhammar. 2016. Operationalizing ecosystem-based adaptation: harnessing ecosystem services to buffer communities against climate change. Ecology and Society 21(1):31.
- 5.da Silva, J.M.C. and Wheeler, E. (2017). Ecosystems as infrastructure. Perspectives in Ecology and Conservation 15(1): 32-35.
- 6. Prudencio, L., and Null, S.E. 2018. Stormwater management and ecosystem services: a review. Environmental Reservation Letters 18: 033002.
- 7.Elliott, R.M., Mtzyn, A.E., Madj, S., Chavez, F.J.V., Laimer, D., Orlove, B.S., and Culligan, P.J. (2019). Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio 49(2): 569-583.
- 8. Statistics Canada. (2016). Census profile 2016 census. Retrieved from: https://www12.statcan.gc.ca/censusrecensement/2016/dp-pd/prof/index.cfm?Lang=E&TABID=1
- 9.Government of Canada. (2010). Canadian climate normals. Retrieved from: https://climate.weather.gc.ca/climate_normals/index_e.html#1981

10. Van Assche, K., R. Beunen, and M. Duinevald. (2014). Evolutionary Governance Theory: An introduction. Springer.

11. Chien, H., and Saito, O. 2021. Evaluating social-ecological fit in urban stream management: The role of governing institutions in sustainable urban ecosystem service provision. Ecosystem Services 49: 101285.